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INTRODUCTION 

As a pa r t  of continuing investigations i n t o  the chemistry of l iquefac t ion  
catalyzed by metal s u l f i d e s ,  a study was made of t he  in t e rac t ion  of H2S and CO 
w i t h  the py r rho t i t e  sur face  using ESR spectroscopy. Minerals contained i n  
coa ls  a re  reported t o  promote hydrogenation and hydrodesulfurization i n  
low-rank coal conversion processes (1,Z). More s p e c i f i c a l l y ,  those containing 
iron a re  found t o  promote both hydrogenation and desul fur iza t ion  reactions (3) .  
I n  t he  py r i t e  and py r rho t i t e  forms, i r o n  has hydrogenation a c t i v i t y  (4-6). The 
l iquefac t ion  a c t i v i t i e s  o f  iron su l f ides  i n  the absence of added H2S a r e  
distinguished by s u l f u r  concentration and shown t o  be FeS2 > Fe2S3 > Fel-,S > 

FeS (7 ) .  However, p y r i t e  quickly decomposes t o  py r rho t i t e  a t  l iquefac t ion  
temperatures (8,9).  Consequently, the c a t a l y t i c  a c t i v i t y  of iron su l f ides  i s  
a t t r i bu ted  t o  a combination of pyr rhot i te  and H2S ( 1 0 , l l ) .  

Transit ion metal-catalyzed hydrodesulfurization has been re la ted  t o  the 
a b i l i t y  of these  t o  form and regenerate su l fu r  vacancies (12). The ca t a lys t  i s  
a l s o  sens i t i ve  t o  the number of metal vacancies (6).  The v a r i a b i l i t y  of t h e  
composition of i ron  su l f ides ,  Fel_xS, found i n  l iquefac t ion  residues i s  
cons is ten t  with these  conclusions. 

6 FeS is  of the NiAs crys ta l - type  and i s  a d high-spin qu in te t  s t a t e  so l id  
with metal p roper t ies .  In an octahedral f i e l d ,  the d o r b i t a l s  a r e  s p l i t  i n t o  
two energy l eve l s ,  t3 and e3 (13). The non-stoichiometric c rys ta l - re la ted  
form of t r i o l i t e  (FeS) i s  pyrrhotite.  The l a t t e r  includes a wide group o f  i ron  
su l f ides ,  Fel-,S w i t h  0 c X < 0.2 (14). All form supers t ruc tures  with ordered 
i ron  vacancies and ordered spins (15). The pyr rho t i t e s  a r e  formed by e i t h e r  
p y r i t e  decomposition w i t h  subsequent c rys t a l  transformation o r  su l fu r  
incorporation t o  FeS l a t t i c e  by reaction w i t h  sulfur o r  H2S, cf. reaction 1 
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(16). 
t imes ion ized i r o n  vacancy, and an e lec t ron  hole, respect ively.  

Ss, V;; and h+ represent s u l f u r  on i t s  normal l a t t i c e  pos i t ion ,  an a 

1. 

VFe vacancies create e lec t ron  acceptor energy l eve l s  which, i n  turn,  
induce e lec t ron  t rans fe r  from the  surrounding l a t t i c e  s u l f u r  ions. This 
e lec t ron  t rans fe r  process creates e lec t ron  d e f i c i e n t  o r b i t a l s  o r  "holes" (17). 
For non-stoichiometr ic su l f i des  such as, Fe0.996S, the  3p(S) holes are present 
i n  such numbers (-10 / cc )  t h a t  they form an impur i ty  energy l eve l  which 

overlaps i n  energy w i t h  the  3d Fe(I1) energy l eve l  (21). This gives r i s e  t o  a 
l a rge  increase i n  densi ty o f  s ta tes  mainly i n  d i r e c t i o n  p a r a l l e l  t o  the  C ax is  
(9) and d is tu rbs  e lec t rons  d i s t r i b u t i o n  i n  t and e levels.  
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The existence o f  an ac t i ve  c a t a l y t i c  s i t e  i s  now postulated t o  be 
l oca l i zed  on i r o n  i o n  and i t s  surrounding matrix. The disturbance o f  the  3d 
Fez+ o r b i t a l  e lec t ron  d i s t r i b u t i o n  brought about by i r o n  vacancies gives r i s e  
t o  the  c a t a l y t i c  ac t i ve  centers on the s o l l d  surface. A l s o ,  there  appears t o  
be a secondary c a t a l y t i c  e f f e c t  connected w i t h  format ion and regenerat ion o f  
s u l f u r  vacancies, Vs  The l a t t e r  occur i n  the  s u l f u r  sub la t t i ce  and are  
formed according t o  reac t ion  2. 

a+ 
(12). 

sS t H ~ ( C O )  2 vSa+ + ae t H,S(COS) 2. 

EXPERIMENTAL 

A. Cata lys t  Preparat ion 
The p y r r h o t i t e  received from the  coal c lean ing  operat ion o f  the U.S.  Steel 

Robena Mines, Pennsylvania, were ground and sieved through a 200-mesh screen 
(75 w ) .  The BET surface area o f  the  ca ta l ys ts  used i n  experiments ranges 

between 5 and 8 m /g (18). 2 

B. L iquefac t ion  Procedure 
The Big Brown l i g n i t e  (C, 74.1 w t  %; H, 5.4 w t  X ;  N, 1.3 w t  %; 0, 18.1 w t  

%; S ,  1.1 w t  %; Texas) used i n  the  experiments was ground and sieved through a 
200-mesh screen. The moisture content was 26.1% as received, and mineral 
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amount was 9.2%. Approximately 1 g o f  the coal sample was inser ted  i n t o  the 
1 2 4 1  tubing reac tors  constructed of 316-stainless steel .  The reactors were 

a d d i t i o n a l l y  charged w i t h  c a t a l y s t  (about 0.15 9). w i t h  water (0.8 g) and by 

gases: The l i que fac t i on  

experiments were c a r r i e d  out a t  temperatures ranging from 573-773°K f o r  60 min. 
Conversion t o  v o l a t i l e  products was ca lcu la ted  on moisture-ash f r e e  (MAF) coal 

bas is  a f t e r  heat ing samples a t  523'K i n  vacuo ( %  1 nun Hg) f o r  5 h rs  (19). 

H2S = 1.75 MPa, H2 = 3.5 MPa and CO = 3.5 MPa. 

C. ESR Measurements 
ESR i nves t i ga t i ons  were performed on powdered p y r r h o t i t e  i n  a vacuum as 

we l l  as under CO, H2S, o r  a CO and H2S mix tu re  over the  range o f  temperature 
293-773°K. The p y r r h o t i t e  was added i n t o  the  ESR glass sample tube which was 

connected w i t h  a vacuum l i n e  and reactant gas cy l i nde rs  applied. The vacuum 
was lo- '  t o r r  and t h a t  o f  t he  gases were 0.05-0.10 MPa each. The samples were 

outgassing a t  room temperature f o r  0.5 h r  before in t roduc ing  the  reactant 
gases. A l l  ESR spectra were recorded using a Brucker ER-420 spectrometer 
employing 100-kHz modulation w i t h  a resonance frequency 9.86 GHz. A 
po l yc rys ta l l i ne  sample of DPPH (g  = 2.0036) was used as a g-marker when 
inves t iga t ions  were performed a t  room temperature. 

RESULTS 

1. Cata lys is  o f  BB1 L i g n i t e  Hydro l iquefac t ion  by I r o n  Su l f i de  Catalysts 
IC a previous a r t i c l e  (19), the conversion of 8B1 i n t o  v o l a t i l e  products 

i n  t h e  H2S-H20-H2-CO system w i t h  no added c a t a l y s t  was reported t o  be 
temperature dependent. Using the same experimental condi t ions,  p y r r h o t i t e  was 
shown t o  increase t h e  conversion i n t o  d i s t i l l a t e  o f  BB1 l i g n i t e  over the  

temperature range o f  573-773°K w i t h  constant 60-minute time (Figure 1)  and the  
time range o f  0-60 minutes w i t h  constant 42OOC reac to r  temperature (Figure 2). 
The l a t t e r  conversion r e s u l t s  fo l lowed the equation, conversion = k 1 n t  where 
k i s  conversion c o e f f i c i e n t  and t i s  time. Py r rho t i t e  i s  more ac t i ve  w i t h  
CO-H2S-H20 than w i t h  H2-H2S-H20 (Figure 3). Under the  reac tor  condi t ions a t  
693°K f o r  1 h r  bu t  i n  the  absence of coal, t he  conversion o f  CO i n t o  C02 w i t h  
added H2S was equal t o  5.3%. Using p y r r h o t i t e  a t  the  same experimental 
conditions, i t  was 6 - f o l d  g rea ter  (31.7%). 
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2. Electron Spin Resonance Spectra o f  Non-stoichiometric .Iron Sulfides 
A. Pyrrhotite-H2S-CO System 

The ESR spectrum o f  Fel_xS contains a broad resonance s igna l  and a narrow 
resonance signal  i n  the  3.10 g region (Figure 4). The l a t t e r  i s  the  focus Of 

a t ten t i on  herein and i s  assigned , to  high sp in  i r o n ( I 1 )  i n  i t s  surrounding 
mat r ix  (20). The spectra are recorded e i t h e r  i n  vacuum (F igure  4a). H2S 
(Figure 4b),  o r  CO (Figure 4c). The signal  i s  s p l i t  i n t o  two i n  vacuum a t  
388"K, w i t h  H2S a t  293"K, and w i t h  CO a t  408°K. Both the r e l a t i v e  i n t e n s i t i e s  

o f  the  two s igna ls  ( A  and 8)  and t h e i r  9-values are temperature dependent 
(Figure 5). Above 593-663"K, the CO-pyrrhotite s igna l  becomes reve rs ib l y  
broadened. The CO-pyrrhotite ESR s ignal  change i s  modif ied by the  presence of 

H2S (Figure 5). The s igna l  changes are  reversible.  

DISCUSSION 

The l i que fac t i on  y i e l d s  o f  d i s t i l l a t e  products are markedly improved i n  
the presence o f  p y r r h o t i t e  as opposed t o  those react ions done i n  i t s  absence. 
These data suggest t h a t  chemisorption occurs between the  reac t ing  gases and the 
py r rho t i t e .  The p r i n c i p a l  purpose o f  t h i s  study i s  t o  ob ta in  d i r e c t  evidence 
f o r  t h i s  in te rac t ion .  The ESR technique i s  used as the  p r inc ipa l  t oo l .  

The sharp ESR s igna l  o f  p y r r h o t i t e  i n  vacuum demonstrates the paramagnetic 
behavior o f  the  Fe( I1 )  i o n  i n  i t s  s o l i d  matrix. This Fe(I1) ESR s igna l  s p l i t s  
i n t o  two, A and B, aDove 388°K (Figure 4a). The new ESR s igna ls  are now 
assigned t o  be a consequence of an e lec t ron  t rans fe r  process i n  the s o l i d  
matrix. Spec i f i ca l l y ,  e lec t rons  are bel ieved t o  be t rans fer red  from su l f ide ,  

S-2, i n t o  the i r o n  vacancy, V F t - .  The reduced charged S2- which i s  formed i s  
e lec t rondef ic ien t ,  i.e., i t  has a hole (ah'). The c rys ta l  f i e l d  i s  changed 
w i t h  the  consequence o f  changes i n  the  sp in  i n t r i n s i c  magnetic moment o f  the 
nearest neighbor ca t ions  so the  two sp in  couplings o f  the  s h i f t e d  o r b i t a l s  are 
induced. An i n t e r a c t i o n  between the  s u l f i d e  hole and paramagnetic i r o n  i on  
occurs which gives r i s e  t o  peak A. The weaker i n te rac t i on  between the  trapped 
e lec t ron  on i r o n  vacancy and paramagnetic i r o n  i o n  moment gives r i s e  t o  peak B. 

The changing g-values o f  ESR peaks A and B w i t h  four cond i t ions  as the  
The 9-value v a r i a t i o n  o f  peaks temperature i s  increased are  shown i n  Figure 5. 
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A and B with temperature i nd i ca te  changes i n  the  c rys ta l  e l e c t r i c  f i e l d .  These 

values are dependent upon the  e lec t ron  t rans fe r  between the  adsorbate and the  

adsorbent. 

Upon exposure o f  p y r r h o t i t e  t o  H2S a t  room temperature, the Fe2+ ESR 
s igna l  i s  s p l i t  i n t o  two separate ones (Figure 4b). Peak B resides a t  l a rge r  

g-values (Figure 4b). This gives d i rec t  evidence f o r  chemisorption o f  the H2S 
onto the surface. Since the  dominant chemical fea ture  o f  H2S i s  the  e lec t ron  
r i c h  s u l f u r  and the  H2S molecular ca t ion  was recen t l y  reported ( 2 2 ) ,  the  

chemisorption process i s  i n te rp re ted  as the  occurrence o f  charge t rans fe r  from 
the  e lec t ron  r i c h  H2S onto the  py r rho t i t e  surface ( reac t ion  3). The f ree  

electrons formed by t h i s  means are delocal ized i n t o  the  i r o n  vacancy band 
probably throughout 3d Fe2' band. 

+ 

H2S(g) H2SY'(ads) + ye 3. 

CO, i n  cont ras t  t o  H2S, i s  o r d i n a r i l y  an e lec t ron  acceptor i n  charge 
t rans fe r  processes. A t  room temperature, i t s  presence does no t  a l t e r  the sharp 
ESR s ignal  o f  py r rho t i t e .  However, the s igna l  i s  s i g n i f i c a n t l y  s p l i t  and 

a l t e r e d  w i t h  inc reas ing  the  temperature (Figure 5). This g-value va r ia t i on  i s  
assigned t o  CO- species formed a f t e r  e lec t ron  t rans fe r  from i r o n  vacancy band, 
reac t ion  4 (23-25). The i n t e n s i t y  o f  peak A i s  more a l te red  than peak B by the 
presence o f  CO. 

CO(g) + ye' + COY-(ads) 4. 

The summary s ign i f i cance  o f  the react ions 3 and 4 i s  t h a t  hydrogen s u l f i d e  
and carbon monoxide a r e  both ac t iva ted  by the p y r r h o t i t e  surface t o  chemically 

reac t  according t o  equat ion 5. When CO and H2S are together i n  the  presence o f  

py r rho t i t e .  peak A i s  l i t t l e  a l t e red  w i t h  temperature. This i s  consistent w i t h  
react ions 3 and 4 simultaneously occurr ing on the  p y r r h o t i t e  surface resu l t i ng  

i n  the  product ion o f  COS ( reac t ion  5). The ac t i ve  hydrogen, HI, i s  consumed by 
the  l i q u e f a c t i o n  media. 

CO{;ds) + H2Src(ads) + COS(g) + 2H' 5. 
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Under high H2S p a r t i a l  pressures i n  the reac tor ,  the Mbssbauer Spectrum 
FeS2 i s  much reduced i f  not absent when the 

Therefore, the production o f  COS by CO + 

(18) showed the presence o f  FeS2. 
p a r t i a l  pressure o f  H2S i s  reduced. 
H2S occurs together w i t h  the t ransformat ion o f  Fel-,S i n t o  FeS2. 
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"673 673 773 

Reaction Temperature,(K 

Figure 1. The e f fec t  of temperature on c a t a l y t i c  l i que fac t i on  o f  BB1 l i g n i t e  i n  
H S-H -CO-H 0 system. The time o f  the reac t ion  was 1 hr. The pressures 03 th$ gas& were: Water 
(0.8 g )  was added. 

H q S ,  1.75 MPa; H2, 3.5 MPa; and CO, 3.5 MPa. 

70 T 
X 

NoCotolyst/ 

J x -Fe ,-IS 

1 , 1 1 1 ,  

10 20 30 40 50 60 
Time,( min) 

Figure 2. K ine t i cs  o f  BB1 l i g n i t e  l i q u e f a c t i o n  a t  693 K w i t h  and without 
The temperature o f  the  reac t ion  was ca ta l ys t  i n  H2S-H -CO-H 0 system. 

420°C. and the  res? o f  t ge  contents were those g iven f o r  Figure 1. 
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Figure 3. The e f f e c t  o f  H -H S-H 0 and CO-H S-H 0 on conversion y ie lds .  The 
l i q u e f a c t i o n  reac t ion$ wfre Gerformed at?69$K f o r  1 h r  w i t h  water = 0.8 g 
and HZS = 1.75 MPa. 

VDCUYrn I O 1  

673-773U 

573u 

438U 

297 K 

H2S l b l  co I C )  v f i- 
Figure 4. ESR s igna l  o f  h igh sp in  i r o n  (11) w i t h  g = 3.10 detected i n  vacuum 

(a),  H2S ( b )  and CO ( c )  a t  the  range o f  temperatures 293-773 K. 
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Figure 5. The v a r i a t i o n  of g-values of s p l i t t i n g  FeLf signal detected i n  
vacuum, H2S, CO and H2S + CO gases. 
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